Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1314507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487524

RESUMO

Background: Rheumatoid factors (RFs) are autoantibodies that target the Fc region of IgG, and are found in patients with rheumatic diseases as well as in the healthy population. Many studies suggest that an immune trigger may (transiently) elicit RF responses. However, discrepancies between different studies make it difficult to determine if and to which degree RF reactivity can be triggered by vaccination or infection. Objective: We quantitatively explored longitudinal RF responses after SARS-CoV-2 vaccination and infection in a well-defined, large cohort using a dual ELISA method that differentiates between true RF reactivity and background IgM reactivity. In addition, we reviewed existing literature on RF responses after vaccination and infection. Methods: 151 healthy participants and 30 RA patients were included to measure IgM-RF reactivity before and after SARS-CoV-2 vaccinations by ELISA. Additionally, IgM-RF responses after a SARS-CoV-2 breakthrough infection were studied in 51 healthy participants. Results: Published prevalence studies in subjects after infection report up to 85% IgM-RF seropositivity. However, seroconversion studies (both infection and vaccination) report much lower incidences of 2-33%, with a trend of lower percentages observed in larger studies. In the current study, SARS-CoV-2 vaccination triggered low-level IgM-RF responses in 5.5% (8/151) of cases, of which 1.5% (2/151) with a level above 10 AU/mL. Breakthrough infection was accompanied by development of an IgM-RF response in 2% (1/51) of cases. Conclusion: Our study indicates that de novo RF induction following vaccination or infection is an uncommon event, which does not lead to RF epitope spreading.


Assuntos
Artrite Reumatoide , COVID-19 , Humanos , Fator Reumatoide , Infecções Irruptivas , Vacinas contra COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Autoanticorpos , Imunoglobulina M , Vacinação
2.
Proc Natl Acad Sci U S A ; 120(50): e2311265120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055740

RESUMO

Immunoglobulin M (IgM) is an evolutionary conserved key component of humoral immunity, and the first antibody isotype to emerge during an immune response. IgM is a large (1 MDa), multimeric protein, for which both hexameric and pentameric structures have been described, the latter additionally containing a joining (J) chain. Using a combination of single-particle mass spectrometry and mass photometry, proteomics, and immunochemical assays, we here demonstrate that circulatory (serum) IgM exclusively exists as a complex of J-chain-containing pentamers covalently bound to the small (36 kDa) protein CD5 antigen-like (CD5L, also called apoptosis inhibitor of macrophage). In sharp contrast, secretory IgM in saliva and milk is principally devoid of CD5L. Unlike IgM itself, CD5L is not produced by B cells, implying that it associates with IgM in the extracellular space. We demonstrate that CD5L integration has functional implications, i.e., it diminishes IgM binding to two of its receptors, the FcαµR and the polymeric Immunoglobulin receptor. On the other hand, binding to FcµR as well as complement activation via C1q seem unaffected by CD5L integration. Taken together, we redefine the composition of circulatory IgM as a J-chain containing pentamer, always in complex with CD5L.


Assuntos
Linfócitos B , Cadeias J de Imunoglobulina , Imunoglobulina M/metabolismo , Cadeias J de Imunoglobulina/metabolismo , Linfócitos B/metabolismo , Antígenos , Macrófagos/metabolismo
3.
Ann Rheum Dis ; 82(7): 945-956, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37055152

RESUMO

BACKGROUND: Rheumatoid factors (RF) are one of the hallmark autoantibodies characteristic of rheumatoid arthritis (RA), and are frequently observed in other diseases and in healthy individuals. RFs comprise multiple subtypes with different specificities towards the constant region of human IgG. Studies indicate that these patterns differ between naturally occurring RFs and RFs associated with disease. However, individual specificities characteristic of either have not been clearly defined. METHODS: In this study, we developed an extended set of engineered IgG-fragment crystallisable (Fc) targets with preferential RF binding to specific (conformational) epitopes, which was subsequently used for profiling of RF binding patterns in a compiled exploration cohort, consisting of sera from healthy donors with measurable RF and patients with RA, primary Sjögren's syndrome (pSS) and seropositive arthralgia. RESULTS: We identified an epitope that is strongly associated with RA, which was targeted by both IgM-RF and IgA-RF. We also identified an epitope that is preferentially targeted by healthy donor (IgM) RFs. IgM-RFs derived from healthy donors and patients with RA and pSS all target distinct regions on the IgG-Fc, whereas overall, the IgA-RF repertoire is largely restricted to pathology-associated specificities. Using monoclonal RFs with different specificities, we furthermore demonstrate that the capacity to activate complement or even inhibit IgG-mediated complement activation varies according to the epitopes to which RFs bind. CONCLUSIONS: Our results demonstrate both the need and feasibility to redefine 'RF' into pathological and physiological autoantibody subtypes.


Assuntos
Artrite Reumatoide , Fator Reumatoide , Humanos , Autoanticorpos , Epitopos , Autoimunidade , Imunoglobulina G , Imunoglobulina M , Imunoglobulina A
4.
Clin Transl Immunology ; 12(1): e1436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36721662

RESUMO

Objectives: The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody-mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs). Methods: We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP-depleted sera or antibodies against factor B and factor D. Results: We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane-bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody-mediated diseases. Conclusion: The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement-mediated killing.

5.
Front Immunol ; 14: 1087532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776883

RESUMO

Of the four human immunoglobulin G (IgG) subclasses, IgG4 is considered the least inflammatory, in part because it poorly activates the complement system. Regardless, in IgG4 related disease (IgG4-RD) and in autoimmune disorders with high levels of IgG4 autoantibodies, the presence of these antibodies has been linked to consumption and deposition of complement components. This apparent paradox suggests that conditions may exist, potentially reminiscent of in vivo deposits, that allow for complement activation by IgG4. Furthermore, it is currently unclear how variable glycosylation and Fab arm exchange may influence the ability of IgG4 to activate complement. Here, we used well-defined, glyco-engineered monoclonal preparations of IgG4 and determined their ability to activate complement in a controlled system. We show that IgG4 can activate complement only at high antigen and antibody concentrations, via the classical pathway. Moreover, elevated or reduced Fc galactosylation enhanced or diminished complement activation, respectively, with no apparent contribution from the lectin pathway. Fab glycans slightly reduced complement activation. Lastly, we show that bispecific, monovalent IgG4 resulting from Fab arm exchange is a less potent activator of complement than monospecific IgG4. Taken together, these results imply that involvement of IgG4-mediated complement activation in pathology is possible but unlikely.


Assuntos
Doenças Autoimunes , Imunoglobulina G , Humanos , Ativação do Complemento , Proteínas do Sistema Complemento , Autoanticorpos
6.
J Immunol ; 209(1): 16-25, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35705253

RESUMO

IgM is secreted as a pentameric polymer containing a peptide called the joining chain (J chain). However, integration of the J chain is not required for IgM assembly and in its absence IgM predominantly forms hexamers. The conformations of pentameric and hexameric IgM are remarkably similar with a hexagonal arrangement in solution. Despite these similarities, hexameric IgM has been reported to be a more potent complement activator than pentameric IgM, but reported relative potencies vary across different studies. Because of these discrepancies, we systematically investigated human IgM-mediated complement activation. We recombinantly generated pentameric and hexameric human IgM (IgM+J and IgM-J, respectively) mAbs and measured their ability to induce complement deposition and complement-dependent cytotoxicity when bound to several Ags at varying densities. At high Ag densities, hexameric and pentameric IgM activate complement to a similar extent as IgG1. However, at low densities, hexameric IgM outcompeted pentameric IgM and even more so IgG1. These differences became progressively more pronounced as antigenic density became critically low. Our findings highlight that the differential potency of hexameric and pentameric IgM for complement activation is profoundly dependent on the nature of its interactions with Ag. Furthermore, it underscores the importance of IgM in immunity because it is a more potent complement activator than IgG1 at low Ag densities.


Assuntos
Imunoglobulina G , Cadeias J de Imunoglobulina , Ativação do Complemento , Proteínas do Sistema Complemento , Humanos , Cadeias J de Imunoglobulina/metabolismo , Imunoglobulina M
7.
Arthritis Rheumatol ; 72(12): 2005-2016, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32648642

RESUMO

OBJECTIVE: Rheumatoid factors (RFs), which are anti-IgG autoantibodies strongly associated with rheumatoid arthritis (RA), are also found in other diseases and in healthy individuals. RFs bind to various epitopes in the constant (Fc-) domain of IgG. Therefore, disease-specific reactivity patterns may exist. This study was undertaken in order to develop a new approach to dissecting RF epitope binding patterns across different diseases. METHODS: We analyzed RF reactivity patterns in serum from patients with seropositive arthralgia, patients with RA, and patients with primary Sjögren's syndrome (SS) using bioengineered, natively folded IgG-Fc targets that demonstrated selective RF binding toward several distinct regions of the IgG-Fc domain. RESULTS: Rheumatoid factor responses primarily bound the Fc Elbow region, with a smaller number of RFs binding the Fc Tail region, while the Fc receptor binding region was hardly targeted. A restricted reactivity against the IgG-Fc Tail region was associated with less positivity for anti-citrullinated protein antibodies (ACPAs) and less arthritis development in arthralgia, whereas combined reactivity toward IgG-Fc Tail and Elbow regions was associated with more arthritis development. Reactivity toward the IgG-Fc Tail region was observed far more frequently in RA than in primary SS. CONCLUSION: Bioengineered IgG targets enable serologic characterization of RF reactivity patterns, and use of this approach appears to reveal patterns associated with ACPA detection and arthritis development in patients with arthralgia. These patterns are able to distinguish RA patients from primary SS patients. This new methodology improves the clinical value of RFs and our understanding of their pathophysiologic processes.


Assuntos
Artrite Reumatoide/imunologia , Epitopos/imunologia , Imunoglobulina G/imunologia , Fator Reumatoide/imunologia , Artralgia/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome de Sjogren/imunologia
8.
Endocrinology ; 157(7): 2772-84, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27219276

RESUMO

Glucocorticoids are steroid hormones that are secreted upon stress. Their effects are mediated by the glucocorticoid receptor, which acts as a transcription factor. Because the antiinflammatory activity of glucocorticoids has been well established, they are widely used clinically to treat many inflammatory and immune-related diseases. However, the exact specificity, mechanisms, and level of regulation of different inflammatory pathways have not been fully elucidated. In the present study, a tail fin amputation assay was used in 3-day-old zebrafish larvae to study the immunomodulatory effects of the synthetic glucocorticoid beclomethasone. First, a transcriptome analysis was performed, which showed that upon amputation mainly immune-related genes are regulated. This regulation was inhibited by beclomethasone for 86% of regulated genes. For two immune-related genes, tlr4bb and alox5ap, the amputation-induced increase was not attenuated by beclomethasone. Alox5ap is involved in eicosanoid biosynthesis, but the increase in leukotriene B4 concentration upon amputation was abolished, and lipoxin A4 levels were unaffected by beclomethasone. Furthermore, we studied the migration of neutrophils and macrophages toward the wound site. Our results show that amputation induced migration of both types of leukocytes and that this migration was dependent on de novo protein synthesis. Beclomethasone treatment attenuated the migratory behavior of neutrophils in a glucocorticoid receptor-dependent manner but left the migration of macrophages unaffected. In conclusion, beclomethasone has a dramatic inhibitory effect on the amputation-induced proinflammatory gene regulation, and this is reflected in an inhibition of the neutrophil migration but not the migration of macrophages, which are likely to be involved in inflammation resolution.


Assuntos
Beclometasona/farmacologia , Movimento Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , Cicatrização/efeitos dos fármacos , Animais , Beclometasona/uso terapêutico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/uso terapêutico , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...